42 research outputs found

    Atlantification of the Arctic Ocean

    Get PDF

    Turbulent mixing in a changing Arctic Ocean

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rippeth, T. P., & Fine, E. C. Turbulent mixing in a changing Arctic Ocean. Oceanography, 35(3-4), (2022), https://doi.org/10.5670/oceanog.2022.103.Historically, the Arctic Ocean has been considered an ocean of low variability and weak turbulent mixing. However, the decline in seasonal sea ice cover over the past couple of decades has led to increased coupling between the atmosphere and the ocean, with potential enhancement of turbulent mixing. Here, we review studies identifying energy sources and pathways that lead to turbulent mixing in an increasingly ice-free Arctic Ocean. We find that the evolution of wind-generated, near-inertial oscillations is highly sensitive to the seasonal sea ice cycle, but the response varies greatly between the continental shelves and the abyssal ocean and between the eastern and western ocean basins. There is growing interest in the role of tides and continental shelf waves in driving mixing over sloping topography. Both dissipate through the development of unsteady lee waves. The role eddies play in transporting shelf water into the basins and in supporting mixing has become more apparent as technological advances have permitted higher resolution observations of sea ice retreat. The importance of the dissipation of unsteady lee waves and of eddies in driving mixing highlights the need for parameterizations of these phenomena in regional ocean models and climate simulations.Tom Rippeth’s interest in the Arctic has been funded through 2 UKRI NERC Consortia (Asbo and Teacosi), and more recently through the UKRI NERC - German Federal Ministry for Science and Education (BMBF) Changing Arctic Programme PEANUTS project. Effie Fine’s interest in the Arctic has been supported by the US National Science Foundation’s Graduate Research Fellowships Program and Office of Polar Programs, by the Office of Naval Research, and by the Postdoctoral Scholar Program at Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship

    Turbulent mixing and the formation of an intermediate nepheloid layer above the Siberian continental shelf break

    Get PDF
    Intermediate nepheloid layers (INLs) form important pathways for the cross-slope transport and vertical export of particulate matter, including carbon. While intermediate maxima in particle settling fluxes have been reported in the Eurasian Basin of the Arctic Ocean, direct observations of turbid INLs above the continental slope are still lacking. In this study, we provide the first direct evidence of an INL, coinciding with enhanced mid-water turbulent dissipation rates, over the Laptev Sea continental slope in summer 2018. Current velocity data show a period of enhanced downslope flow with depressed isopcynals, suggesting that the enhanced turbulent dissipation is probably the consequence of the presence of an unsteady lee wave. Similar events occur mostly during ice free periods, suggesting an increasing frequency of episodic cross-slope particle transport in the future. The discovery of the INL and the episodic generation mechanism provide new insights into particle transport dynamics in this rapidly changing environment

    Shelf Seas Baroclinic Energy Loss: Pycnocline Mixing and Bottom Boundary Layer Dissipation

    Get PDF
    Observations of turbulent kinetic energy dissipation rate from a range of historical shelf seas data sets are viewed from the perspective of their forcing and dissipation mechanisms: barotropic to baroclinic tidal energy conversion, and pycnocline and bottom boundary layer (BBL) dissipation. The observations are placed in their geographical context using a high resolution numerical model (NEMO AMM60) in order to compute relevant maps of the forcing (conversion). We analyze, in total, 18 shear microstructure surveys undertaken over a 17 year period from 1996 to 2013 on the North West European shelf, consisting of 3,717 vertical profiles of shear microstructure: 2,013 from free falling profilers and 1,704 from underwater gliders. A robust positive relationship is found between model-derived barotropic to baroclinic conversion, and observed pycnocline integrated. A fitted power law relationship of approximately one-third is found, giving a simple new parameterization. We discuss reasons for this apparent power law and where the “missing” dissipation may be occurring. We conclude that internal wave related dissipation in the bottom boundary layer provides a robust explanation and is consistent with a commonly used fine-scale pycnocline dissipation parameterization

    The maintenance of the subsurface chlorophyll maximum in the stratified western Irish Sea

    Get PDF
    The diapycnal flux of nitrate from the deep water provides a limit on new production in the subsurface chlorophyll maximum (SCM) during summer in stratified shelf seas. Here we estimate the diapycnal nitrate flux into the SCM in the stratified western Irish Sea (SWIS). Sampling took place immediately before neap tides when winds were light, so flux estimates reported provide a lower limit to nitrate supply to the SCM. Measurements of turbulent kinetic energy dissipation, chlorophyll a, and nitrate were used to estimate the flux of nitrate and chlorophyll through the SCM. Turbulent dissipation was low in the SCM (10–9 to 10–7 m2 s–3), driving a correspondingly low nitrate flux into the SCM (0.31 mmol m–2 d–1). The thermocline was marginally stable throughout sampling, and thus the addition of shear would likely result in shear instabilities and mixing. We show that although the SWIS is documented as having an energetic internal tide at this time, there was a low level of dissipation within the thermocline. We argue that the internal tide sets up background shear, which results in marginal stability. The addition of extra shear through the passage of nonlinear internal waves and/or the wind can trigger instability and mixing. We extrapolate our flux estimate over the summer and show that the nitrate flux is insufficient to sustain the documented summer production estimates for the SWIS. This suggests that episodic events are likely to be important for nitrate fluxes, or even largely responsible for the nitrate flux that sustains the SCM

    Observational energy transfers of a spiral cold filament within an anticyclonic eddy

    Get PDF
    The ocean surface mixed layer represents a critical interface linking the ocean and atmosphere. The physical processes determining the surface mixed layer properties and mediate atmosphere-ocean exchange. Submesoscale processes play a key role in cross-scale oceanic energy transformation and the determination of surface mixed-layer properties, including the enhancement of vertical nutrient transport, leading to increased primary productivity. Herein, we presented observations of the spiral chlorophyll-a filament and its influence on turbulence within an anticyclonic eddy in the western South China Sea during August 2021. The filament had a negative Ertel potential vorticity associated with strong upwelled/downward currents (approximately 20-40 m/day). Across-filament sections of the in-situ profiles showed turbulent dissipation rates enhanced in the filament. We suggested this enhancement values can be attributed to submesoscale processes, which accounted for 25% of the total parameterized turbulent dissipation rates. The present parametrized submesoscale turbulent scheme overestimated the in-situ values. The filament transferred kinetic energy upward to anticyclonic eddy via barotropic instability and gained energy from the anticyclonic eddy via baroclinic instability. After kinetic energy budget diagnostic, we suggested besides symmetric instability, centrifugal instability and mixed layer baroclinic instability should also be included in the turbulence scheme to overcome the overestimation. The observed dual energy transfers between the anticyclonic eddy and filament, and the observed high turbulent energy dissipation within the filament, emphasized the need for these processes to be accurately parameterized regional and climate models

    Intensification of Near-Surface Currents and Shear in the Eastern Arctic Ocean:A More Dynamic Eastern Arctic Ocean

    Get PDF
    A 15-year (2004–2018) record of mooring observations from the upper 50 m of the ocean in the eastern Eurasian Basin reveals increased current speeds and vertical shear, associated with an increasing coupling between wind, ice, and the upper ocean over 2004–2018, particularly in summer. Substantial increases in current speeds and shears in the upper 50 m are dominated by a two times amplification of currents in the semidiurnal band, which includes tides and wind-forced near-inertial oscillations. For the first time the strengthened upper ocean currents and shear are observed to coincide with weakening stratification. This coupling links the Atlantic Water heat to the sea ice, a consequence of which would be reducing regional sea ice volume. These results point to a new positive feedback mechanism in which reduced sea ice extent facilitates more energetic inertial oscillations and associated upper-ocean shear, thus leading to enhanced ventilation of the Atlantic Water

    Evolution of oceanic near surface stratification in response to an autumn storm

    Get PDF
    Understanding the processes that control the evolution of the ocean surface boundary layer (OSBL) is a prerequisite for obtaining accurate simulations of air-sea fluxes of heat and trace gases. Observations of the rate of dissipation of turbulent kinetic energy (É›), temperature, salinity, current structure and wave-field over a period of 9.5 days in the NE Atlantic during the Ocean Surface Mixing, Ocean Submesoscale Interaction Study (OSMOSIS), are presented. The focus of this study is a storm which passed over the observational area during this period. The profiles of É› in the OSBL are consistent with profiles from large eddy simulation (LES) of Langmuir turbulence. In the transition layer (TL), at the base of the OSBL, É› was found to vary periodically at the local inertial frequency. A simple bulk model of the OSBL and a parametrisation of shear driven turbulence in the TL are developed. The parametrisation of É› is based on assumptions about the momentum balance of the OSBL and shear across the TL. The predicted rate of deepening, heat budget and the inertial currents in the OSBL were in good agreement with the observations, as is the agreement between the observed value of É› and that predicted using the parametrisation. A previous study reported spikes of elevated dissipation related to enhanced wind-shear alignment at the base of the OSBL after this storm. The spikes in dissipation are not predicted by this new parametrisation, implying that they are not an important source of dissipation during the storm

    Increasing nutrient fluxes and mixing regime changes in the eastern Arctic Ocean

    Get PDF
    Primary productivity in the Arctic Ocean is experiencing dramatic changes linked to the receding sea ice cover. The vertical transport of nutrients from deeper water layers is the limiting factor for primary production. Here, we compare coincident profiles of turbulence and nutrients from the Siberian Seas in 2007, 2008, and 2018. In all years, the water column structure in the upstream region of the Arctic Boundary Current promotes upward nutrient transport, in contrast to the regions further downstream, and there are first indications for an eastward progression of these conditions. In summer 2018, strongly enhanced vertical nitrate flux and primary production above the continental slope were observed, likely related to a remote storm. The estimated contribution of these elevated fluxes above the slope to the Pan-Arctic vertical nitrate supply is comparable with the basin-wide transport, and is predicted to increase with declining sea ice cover in the future
    corecore